Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Vis Comput Graph ; 30(5): 2796-2806, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38437123

RESUMO

VR devices have recently been actively promoted as tools for knowledge workers and prior work has demonstrated that VR can support some knowledge worker tasks. However, only a few studies have explored the effects of prolonged use of VR such as a study observing 16 participants working in VR and a physical environment for one work-week each and reporting mainly on subjective feedback. As a nuanced understanding of participants' behavior in VR and how it evolves over time is still missing, we report on the results from an analysis of 559 hours of video material obtained in this prior study. Among other findings, we report that (1) the frequency of actions related to adjusting the headset reduced by 46% and the frequency of actions related to supporting the headset reduced by 42% over the five days; (2) the HMD was removed 31% less frequently over the five days but for 41% longer periods; (3) wearing an HMD is disruptive to normal patterns of eating and drinking, but not to social interactions, such as talking. The combined findings in this work demonstrate the value of long-term studies of deployed VR systems and can be used to inform the design of better, more ergonomic VR systems as tools for knowledge workers.


Assuntos
Realidade Virtual , Humanos , Gráficos por Computador , Retroalimentação
2.
Artigo em Inglês | MEDLINE | ID: mdl-37639421

RESUMO

Optical see-through head-mounted displays (OST HMDs) are a popular output medium for mobile Augmented Reality (AR) applications. To date, they lack efficient text entry techniques. Smartphones are a major text entry medium in mobile contexts but attentional demands can contribute to accidents while typing on the go. Mobile multi-display ecologies, such as combined OST HMD-smartphone systems, promise performance and situation awareness benefits over single-device use. We study the joint performance of text entry on mobile phones with text output on optical see-through head-mounted displays. A series of five experiments with a total of 86 participants indicate that, as of today, the challenges in such a joint interactive system outweigh the potential benefits.

3.
IEEE Trans Vis Comput Graph ; 28(11): 3748-3758, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36044496

RESUMO

Learning vocabulary in a primary or secondary language is enhanced when we encounter words in context. This context can be afforded by the place or activity we are engaged with. Existing learning environments include formal learning, mnemonics, flashcards, use of a dictionary or thesaurus, all leading to practice with new words in context. In this work, we propose an enhancement to the language learning process by providing the user with words and learning tools in context, with VocabulARy. VocabulARy visually annotates objects in AR, in the user's surroundings, with the corresponding English (first language) and Japanese (second language) words to enhance the language learning process. In addition to the written and audio description of each word, we also present the user with a keyword and its visualisation to enhance memory retention. We evaluate our prototype by comparing it to an alternate AR system that does not show an additional visualisation of the keyword, and, also, we compare it to two non-AR systems on a tablet, one with and one without visualising the keyword. Our results indicate that AR outperforms the tablet system regarding immediate recall, mental effort and task-completion time. Additionally, the visualisation approach scored significantly higher than showing only the written keyword with respect to immediate and delayed recall and learning efficiency, mental effort and task-completion time.


Assuntos
Aprendizagem Verbal , Vocabulário , Gráficos por Computador , Aprendizagem , Idioma
4.
IEEE Trans Vis Comput Graph ; 28(11): 3810-3820, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36044497

RESUMO

Virtual Reality (VR) provides new possibilities for modern knowledge work. However, the potential advantages of virtual work environments can only be used if it is feasible to work in them for an extended period of time. Until now, there are limited studies of long-term effects when working in VR. This paper addresses the need for understanding such long-term effects. Specifically, we report on a comparative study $i$, in which participants were working in VR for an entire week-for five days, eight hours each day-as well as in a baseline physical desktop environment. This study aims to quantify the effects of exchanging a desktop-based work environment with a VR-based environment. Hence, during this study, we do not present the participants with the best possible VR system but rather a setup delivering a comparable experience to working in the physical desktop environment. The study reveals that, as expected, VR results in significantly worse ratings across most measures. Among other results, we found concerning levels of simulator sickness, below average usability ratings and two participants dropped out on the first day using VR, due to migraine, nausea and anxiety. Nevertheless, there is some indication that participants gradually overcame negative first impressions and initial discomfort. Overall, this study helps lay the groundwork for subsequent research, by clearly highlighting current shortcomings and identifying opportunities for improving the experience of working in VR.


Assuntos
Gráficos por Computador , Realidade Virtual , Humanos , Interface Usuário-Computador
5.
IEEE Trans Vis Comput Graph ; 28(5): 2069-2079, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35167458

RESUMO

Virtual Reality (VR) has the potential to support mobile knowledge workers by complementing traditional input devices with a large three-dimensional output space and spatial input. Previous research on supporting VR knowledge work explored domains such as text entry using physical keyboards and spreadsheet interaction using combined pen and touch input. Inspired by such work, this paper probes the VR design space for authoring presentations in mobile settings. We propose PoVRPoint-a set of tools coupling pen- and touch-based editing of presentations on mobile devices, such as tablets, with the interaction capabilities afforded by VR. We study the utility of extended display space to, for example, assist users in identifying target slides, supporting spatial manipulation of objects on a slide, creating animations, and facilitating arrangements of multiple, possibly occluded shapes or objects. Among other things, our results indicate that 1) the wide field of view afforded by VR results in significantly faster target slide identification times compared to a tablet-only interface for visually salient targets; and 2) the three-dimensional view in VR enables significantly faster object reordering in the presence of occlusion compared to two baseline interfaces. A user study further confirmed that the interaction techniques were found to be usable and enjoyable.


Assuntos
Interface Usuário-Computador , Realidade Virtual , Gráficos por Computador , Humanos , Tato
6.
Artigo em Inglês | MEDLINE | ID: mdl-33017290

RESUMO

Virtual Reality (VR) has the potential to transform knowledge work. One advantage of VR knowledge work is that it allows extending 2D displays into the third dimension, enabling new operations, such as selecting overlapping objects or displaying additional layers of information. On the other hand, mobile knowledge workers often work on established mobile devices, such as tablets, limiting interaction with those devices to a small input space. This challenge of a constrained input space is intensified in situations when VR knowledge work is situated in cramped environments, such as airplanes and touchdown spaces. In this paper, we investigate the feasibility of interacting jointly between an immersive VR head-mounted display and a tablet within the context of knowledge work. Specifically, we 1) design, implement and study how to interact with information that reaches beyond a single physical touchscreen in VR; 2) design and evaluate a set of interaction concepts; and 3) build example applications and gather user feedback on those applications.

7.
IEEE Trans Vis Comput Graph ; 25(11): 3190-3201, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31403423

RESUMO

Physical keyboards are common peripherals for personal computers and are efficient standard text entry devices. Recent research has investigated how physical keyboards can be used in immersive head-mounted display-based Virtual Reality (VR). So far, the physical layout of keyboards has typically been transplanted into VR for replicating typing experiences in a standard desktop environment. In this paper, we explore how to fully leverage the immersiveness of VR to change the input and output characteristics of physical keyboard interaction within a VR environment. This allows individual physical keys to be reconfigured to the same or different actions and visual output to be distributed in various ways across the VR representation of the keyboard. We explore a set of input and output mappings for reconfiguring the virtual presentation of physical keyboards and probe the resulting design space by specifically designing, implementing and evaluating nine VR-relevant applications: emojis, languages and special characters, application shortcuts, virtual text processing macros, a window manager, a photo browser, a whack-a-mole game, secure password entry and a virtual touch bar. We investigate the feasibility of the applications in a user study with 20 participants and find that, among other things, they are usable in VR. We discuss the limitations and possibilities of remapping the input and output characteristics of physical keyboards in VR based on empirical findings and analysis and suggest future research directions in this area.

8.
IEEE Trans Vis Comput Graph ; 24(9): 2649-2662, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-28961115

RESUMO

Optical see-through head-mounted displays (OST HMDs) are a major output medium for Augmented Reality, which have seen significant growth in popularity and usage among the general public due to the growing release of consumer-oriented models, such as the Microsoft Hololens. Unlike Virtual Reality headsets, OST HMDs inherently support the addition of computer-generated graphics directly into the light path between a user's eyes and their view of the physical world. As with most Augmented and Virtual Reality systems, the physical position of an OST HMD is typically determined by an external or embedded 6-Degree-of-Freedom tracking system. However, in order to properly render virtual objects, which are perceived as spatially aligned with the physical environment, it is also necessary to accurately measure the position of the user's eyes within the tracking system's coordinate frame. For over 20 years, researchers have proposed various calibration methods to determine this needed eye position. However, to date, there has not been a comprehensive overview of these procedures and their requirements. Hence, this paper surveys the field of calibration methods for OST HMDs. Specifically, it provides insights into the fundamentals of calibration techniques, and presents an overview of both manual and automatic approaches, as well as evaluation methods and metrics. Finally, it also identifies opportunities for future research.

9.
IEEE Comput Graph Appl ; 38(6): 125-133, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30668459

RESUMO

Virtual reality has the potential to change the way we work. We envision the future office worker to be able to work productively everywhere solely using portable standard input devices and immersive head-mounted displays. Virtual reality has the potential to enable this, by allowing users to create working environments of their choice and by relieving them from physical world limitations, such as constrained space or noisy environments. In this paper, we investigate opportunities and challenges for realizing this vision and discuss implications from recent findings of text entry in virtual reality as a core office task.

10.
IEEE Trans Vis Comput Graph ; 23(6): 1706-1724, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-27008668

RESUMO

Augmented Reality is a technique that enables users to interact with their physical environment through the overlay of digital information. While being researched for decades, more recently, Augmented Reality moved out of the research labs and into the field. While most of the applications are used sporadically and for one particular task only, current and future scenarios will provide a continuous and multi-purpose user experience. Therefore, in this paper, we present the concept of Pervasive Augmented Reality, aiming to provide such an experience by sensing the user's current context and adapting the AR system based on the changing requirements and constraints. We present a taxonomy for Pervasive Augmented Reality and context-aware Augmented Reality, which classifies context sources and context targets relevant for implementing such a context-aware, continuous Augmented Reality experience. We further summarize existing approaches that contribute towards Pervasive Augmented Reality. Based our taxonomy and survey, we identify challenges for future research directions in Pervasive Augmented Reality.

11.
IEEE Trans Vis Comput Graph ; 22(7): 1843-51, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26561461

RESUMO

Paper documents such as passports, visas and banknotes are frequently checked by inspection of security elements. In particular, optically variable devices such as holograms are important, but difficult to inspect. Augmented Reality can provide all relevant information on standard mobile devices. However, hologram verification on mobiles still takes long and provides lower accuracy than inspection by human individuals using appropriate reference information. We aim to address these drawbacks by automatic matching combined with a special parametrization of an efficient goal-oriented user interface which supports constrained navigation. We first evaluate a series of similarity measures for matching hologram patches to provide a sound basis for automatic decisions. Then a re-parametrized user interface is proposed based on observations of typical user behavior during document capture. These measures help to reduce capture time to approximately 15 s with better decisions regarding the evaluated samples than what can be achieved by untrained users.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...